
1

Glade

Peardrop Design Systems
10th June 2013

Sunday, 22 September 13

2

What is Glade?
• GDS LEF and DEF Editor

– Allows viewing and editing of physical data in a variety of
formats

– Multi Platform: runs on Windows, Linux, Mac (even Solaris!)
– Simple yet powerful

• Programmable in Python
• Pcells (parameterised cells) in Python
• DRC, extraction, LVS
• Etc…

Sunday, 22 September 13

3

Contents

1. GUI
2. Techfile setup
3. Basic editing
4. Pcells
5. DRC / extraction / LVS
6. Python programming

Sunday, 22 September 13

4

GUI

Sunday, 22 September 13

5

Starting Glade
• From the icon

– Set file association if you want to double click on e.g. a GDS
file and have Glade open it

• From the command line
– glade [options]

• On startup, Glade reads:
– ~/.gladerc (Linux/Mac) or %HOME%\.gladerc (Windows)

• Display and selection settings, window arrangement.
– ~/.glade.py (Linux/Mac) or %HOME%\.glade.py (Windows)

• Python script that is run on startup. Useful for loading
default techfile, project library etc. Note that this is read
before any command line options.

Sunday, 22 September 13

6

GUI – the basics

Command line

Menus Toolbars

Dock windows

Tab windows

Message dock
window

Status bar

Sunday, 22 September 13

7

GUI - Visibility
• Layer visibility controlled by LSW

– Right mouse click on layer toggles
visibility

• Small objects (less than filter
size)
– Not drawn to improve drawing speed

on very large designs
• Can be controlled by display

options form
• Display of layout hierarchy

– Controlled by start & stop depth
• Toolbar / menu / bindkeys can

change the display depth

RMB click here to
toggle visibility

Enable filtering Filter size in
pixels

Display start level Display stop level

Sunday, 22 September 13

8

GUI - Selection
• Selection

– Many commands work on the ‘selected set’ of objects
– Use Left mouse button to select objects

• Single click selects objects
• Shift + click adds to selected set
• Ctrl + click removes from selected set
• Click and drag selects objects in the drag area
• Double click selects and queries and object’s attributes
• Number of items selected shown in the status bar

– Selected objects are highlighted
– Other unselected objects can be dimmed (set in Selection

Options form)

Sunday, 22 September 13

9

GUI - Selection
• Selection Mode

– Full: whole objects are selected
– Partial: Edges or Vertices of shapes are selected
– Mode is toggled by F4 key
– Current selection mode shown in status bar

• Selection only possible on objects that are selectable
– Controlled by LSW (Layer Select Window)

• Use middle mouse button to toggle selectability
• Unselectable layers greyed out

Middle mouse click here to
toggle selectability

Sunday, 22 September 13

10

GUI - Zooming
• Zoom by:

– Bindkeys:
• Z (zoom in by 2)
• Shift-Z (zoom out by 2)
• F (fit window)
• X (zoom to selected set)

– Use scroll wheel to zoom in/out
• % zoomed in/out can be set in Pan/Zoom options form

– Use right mouse button drag
• Start at lower point and drag up – zooms in
• Start at upper point and drag down – zooms out

Sunday, 22 September 13

11

GUI - Panning
• Pan (move around the viewport) by:

– Tab (pans to the point under the cursor)
– View->Pan To Point (pans to the X/Y coord specified)
– Pan using left/right/up/down keys

• Pans by default half the viewport width/height
• Value can be changed in Pan/Zoom options form

– Pan using middle mouse drag
• Pans in real time

Sunday, 22 September 13

12

GUI - Options
• Lots of options!

– Display options form (E bindkey)
• How some objects are displayed
• Grid, filtering, snapping etc

– Selection options form (Shift-E bindkey)
• Full/Partial select (F4 bindkey)
• Selection type
• Dimming
• Gravity
• Cursor style
• Dynamic highlight

Sunday, 22 September 13

13

Display Options
• Object Setting control display of objects

Sunday, 22 September 13

14

Display Options
• Display settings control drawing options

Sunday, 22 September 13

15

Display Options
• Snap settings set snap grid and angle

Sunday, 22 September 13

16

Display Options
• Miscellaneous options...

Sunday, 22 September 13

17

Selection Options
• Selection options

dialog controls
selectivity, gravity,
dimming etc.

Sunday, 22 September 13

18

Techfile Setup

Sunday, 22 September 13

19

Techfile Setup
• The techfile is an ascii file containing information

about the process you are working on.
• Defines

– Layer names, colours, fill patterns, linestyles
– Layer functions (routing / via etc)
– Layer connections (used by net tracer)
– Width/spacing rules
– Via definitions
– MPP (MultiPartPath) rules

• Glade can also read Cadence display.drf/ .tf or
Laker .dsp/ .tf techfiles.

Sunday, 22 September 13

20

LAYER section

• All layers have a name and a purpose
• Layers have GDS number / datatype mappings
• Layer colour as RGBA (alpha)
• Visibility and Selectability
• Fill style (name of stipple pattern)
• Line style (name of line style pattern)

// Name Purpose gds_num gds_dtyp RGBA sel? vis? fillstyle linestyle
LAYER psub
 drawing 0 0
 (217,150,150,128)
 t
 t

 empty
 dashed2 ;
LAYER nwell
 drawing 1 0
 (150,150,217,128)
 t
 t

 empty
 dashed2 ;
LAYER od
 drawing 2 0
 (217,204,0,128)
 t
 t
 dots_rare
 plain ;
LAYER polyg
 drawing 3 0
 (255,0,0,128)

 t

 t
 zagr1
 plain ;

Sunday, 22 September 13

21

FUNCTION section

• FUNCTION of the layer/purpose pair can be one of:
– CUT (a via or contact layer)
– ROUTING (a layer that can have connectivity)
– BLOCKAGE (as in LEF/DEF)
– MASTERSLICE (as in LEF/DEF)
– PIN (as in LEF/DEF)
– OVERLAP (as in LEF/DEF)
– WELL
– DIFFUSION
– POLY
– IMPLANT
– NONE

• Mainly used in LEF/DEF interface

// Layer Function.
//
FUNCTION
 polyg
 drawing
 ROUTING ;
FUNCTION
 cont
 drawing
 CUT ;
FUNCTION
 metal1
 drawing
 ROUTING ;
FUNCTION
 via12
 drawing
 CUT ;

Sunday, 22 September 13

22

CONNECTIONS section

• Used to define connectivity for e.g. the Net Tracer
• Can connect layer1 to layer2 by a via layer
• Can also directly connect two layers

– CONNECT li drawing TO poly drawing ;

// Layer Connections.
//
CONNECT polyg drawing BY cont drawing TO metal1 drawing ;
CONNECT metal1 drawing BY via12 drawing TO metal2 drawing ;
CONNECT metal2 drawing BY via23 drawing TO metal3 drawing ;

Sunday, 22 September 13

23

Spacing Rules section

• Defines simple layer rules, used by Verify->Check…
command

// Spacing rules.
//
MINWIDTH nwell drawing 1.80 ;
MINSPACE nwell drawing 1.20 ;
MINAREA active drawing 0.45;
MINENC nwell drawing active drawing 0.20 ;
MINOVLP polyg drawing active drawing 0.18 ;

Sunday, 22 September 13

24

Via rules section

• Defines via definitions for Create->Via command
• Vias have an upper and lower layer normally of

function ROUTING
• Vias have a layer of function CUT
• Can have multiple cut shapes in vias e.g. to create a

2x1 or 1x2 via.

// Via rules.
//
VIA od_m1

 metal1 drawing -0.130 -0.130 0.130 0.130

 cont drawing -0.080 -0.080 0.080 0.080

 od drawing -0.150 -0.150 0.150 0.150

Sunday, 22 September 13

25

MultiPartPath rules
section

• MPP rules define how a MPP object is created
– A MPP is like a normal path but with multiple layers and

(optionally) contacts between the layers
– Typically used for e.g. guard rings.
– Can be edited and moved/stretched just like a normal path.

// MultiPartPath rules
//
MPP nguard LAYER nwell drawing WIDTH 1.80 BEGEXT 0.90 ENDEXT 0.9 ;
MPP nguard LAYER od drawing WIDTH 1.18 BEGEXT 0.59 ENDEXT 0.59 ;
MPP nguard LAYER nimp drawing WIDTH 1.54 BEGEXT 0.77 ENDEXT 0.77 ;
MPP nguard LAYER cont drawing WIDTH 0.16 BEGEXT -0.08 ENDEXT -0.08 SPACE 0.18 LENGTH 0.16 ;
MPP nguard LAYER metal1 drawing WIDTH 0.60 BEGEXT 0.30 ENDEXT 0.30 ;

Sunday, 22 September 13

26

Stipple pattern section

• Stipple patterns can be 4x4, 8x8, 16x16, 32x32
• Can create/edit with the stipple pattern editor

// Name Type Fill pattern
STIPPLE
 zagl
 STIPPLE

 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

 ;

Sunday, 22 September 13

27

Line style section

• Line styles used to define the line surround of a
shape

• Defines the width of the lines (0 is default width)
• Also defines any pattern

– - - - - - DASH
– DOT
– - . - . - . DASHDOT etc.

• Can be set in the stipple pattern editor

// Name Width Style
LINE
 plain
 0
 SOLID ;
LINE
 thicksolid
 4
 SOLID ;
LINE
 thick
 2
 SOLID ;
LINE
 dashed2
 2
 DASH ;
LINE
 dotted
 0
 DOT ;
LINE
 dashdot
 0
 DASHDOT ;
LINE
 dashdotdot
0
 DASHDOTDOT ;

Sunday, 22 September 13

28

Basic Editing

Sunday, 22 September 13

29

Basic Editing
• Many commands work on the Selected Set.

– Selected Set is a list of objects that have been selected.
– Selected objects have their outline drawn in the ‘select’

layer (defaults to white).
– Selection can be made by:

• LMB (Left mouse button) click on an object
• Shift+LMB adds to the selected set
• Ctrl+LMB removes from the selected set
• LMB drag will select objects wholly contained in the drag

rectangle
• LMB drag works with modifier keys Shift and Ctrl

– Bindkey Ctrl-A selects all objects, Ctrl-D deselects all
selected objects.

Sunday, 22 September 13

30

Selection - Continued
• Shapes can be selected

according to the current
selection mode
– FULL : selects the whole shape
– PARTIAL : selects either an edge of

a shape or a vertex of a shape.
Vertices will be selected if the
cursor is within 10% of the nearest
edge length to the vertex.

• Toggle between full/partial
mode with the F4 bindkey

• Other objects can also be
selected
– Instances/arrays
– Text labels
– Etc.

Full

Partial
(Edge)

Partial
(Vertex)

Sunday, 22 September 13

31

Selection - Continued
• Selection can be controlled by:

– Making layers unselectable/invisible (can’t select invisible
layers)

– Making the Instance layer unselectable prevents selecting
instances or arrays

– When there are multiple object under the cursor, if the
cursor does not move and the left mouse button click
repeated, objects with edges near the cursor are cycled
through.

• Number of objects selected is shown in the status
bar

• Query selected objects using the Q bindkey (Edit-
>Query)

Sunday, 22 September 13

32

Basic Editing – Creating
shapes

• Select the layer you want to draw on by LMB clicking
on it in the LSW

• Use either menu, toolbar or shorcut key to create
objects. Shortcut key has the advantage of being
able to work in infix mode.
– Infix mode uses current cursor position for the first

coordinate. Set using Display Options form.
• During shape creation an options form can be

displayed. It can be toggled between shown/hidden
using the F3 key.

• For paths and polygons, finish by hitting Enter key,
or by double clicking. There is no need to ‘close’ a
polygon.

Sunday, 22 September 13

33

Create Polygon
• Bindkey Shift+P starts a

polygon
• Edges entered are drawn in

yellow
• ‘Close edges’ are drawn

dotted blue. These are
edges that will be
automatically added to
close the polygon, if Enter
is pressed or a double click
at the current point.

• There is no need to enter
the last point coincident
with the start point as a
result. Create Polygon options form

Sunday, 22 September 13

34

Create Polygon -
continued

• Poygon points entered are snapped to the snap grid
(defined in the Display Options form) and according
to the snap angle (Manhattan / Diagonal / Any
Angle).

• While entering a polygon, you can undo the last
point entered by using the Backspace key.

• Colinear points entered (points with exactly the
same X and Y values) are automatically removed

• Self-intersecting polygons are not allowed. An error
will be given and the polygon will not be created.

Sunday, 22 September 13

35

Create Polygon -
continued

• Polygons can be selected and queried to make
modifications
– Change the layer
– Edit vertices textually

• Query form shows other useful info like area,
perimeter, bounding box.

Sunday, 22 September 13

36

Create Path
• Create Path

– Creates a path. Width,
extension, style and shielding
can be defined in the options
form

– With layer function and vias
defined in techfile, the U key
will add a via and path
creation continues on the next
routing layer up. The D key
will add a via and path
creation continues on the next
routing layer down.

• End a path with Enter or
double click. Backup to
undo last point entered.

Sunday, 22 September 13

37

Create Instance
• Create Instance shows an

outline of the instance, and
its cell name.

• Use the option form to
define innstance’s library/
cell/view names.

• Arrays can be generated by
setting number of rows/cols
and spacing

• Instances current can have
orientations R0, R90, R180,
R270, MX, MXR90, MY,
MYR90

Sunday, 22 September 13

38

Editing Commands
• Move

– Select object(s) and move.
First point is the reference
point, second point defines
the delta for the move.

– To move a fixed distance,
Use Edit->Move, then F5.
Enter X/Y coords as 0,0.
Then F5 again and enter
delta X,Y required.

– Move can rotate/mirror
shapes
• Use r, x, y bindkeys

during move
– Move can change the layer of

the shape

Sunday, 22 September 13

39

Editing Commands
• Copy

– Similar to move: select the
object(s) to copy, then enter
the reference coordinate
and the destination
coordinate.

– Copy can copy the object(s)
by array (not an instance
array)

– Copy can rotate/mirror
during copy
• Use r/x/y bindkeys or

option form buttons
– Copy can change layer of

shape(s). All shapes will be
changed to the target layer.

Sunday, 22 September 13

40

Editing Commands
• Stretch

– Select edge in partial select mode
– Stretch will show as yellow dotted line
– Stretch options form allows ‘locking’

diagonals. Otherwise stretching a
manhattan edge of the object may
change the adjacent diagonal to any
angle.

– Stretch works on selected vertices as
well

– It’s not a good idea to try and stretch
multiple edges/vertices at same time
unless they belong to different
shapes!

– Stretch will move shapes that have
been selected in full select mode

Sunday, 22 September 13

41

PCells

Sunday, 22 September 13

42

PCells
• PCells are Parameterised Cells

– Instances of a PCell can be different depending on the
properties of the instance. For example a MOS device can
have W, L parameterisable.

• Benefits of PCells
– Designed once – can be used in many variants
– Reduce DRC errors
– Faster layout times

• Glade PCells are NOT the same as Cadence Pcells or
Synopsys PyCells!
– Other vendor’s PCells use proprietary languages (e.g. Skill)

and/or plugins (PyCells)

Sunday, 22 September 13

43

PCells
• Glade PCells written in Python

– Code can be debugged using print statements or using a
Python debugger e.g. ActiveState Komodo.

– PCell files must be kept in a directory in user’s
PYTHONPATH

– Bytecode compiled PCells can be used (.pyc files) to
distribute unreadable PCells.

• PCell code creates a cell called a SuperMaster. This
cell is used to create instances of PCells. When an
instance of the supermaster is created, a SubMaster
cell is also created using the unique properties of
the instance.

• SubMaster cells are not visible in the library browser
– they are managed by the PCell subsystem.

Sunday, 22 September 13

44

PCells

• An example: nmos13_multi.py (only the first few
lines shown)
– We define a function called nmos13_multi.
– It has 4 arguments

• 1st is always the cellView that the PCell instance is
created in.

• Remainder are the PCell parameters. They *must* have
default values specified, so we can build the PCell if the
properties have not yet been specified on the PCell
instance

Import the db wrappers
from ui import *

The entry point. The function name *must* match the filename.
def nmos13_multi(cv, w=1.1, l=0.13, m=1) :

 lib = cv.lib()

 dbu = lib.dbuPerUU()

 width = int(w * dbu)

 length = int(l * dbu)

 fingers = int(m)

Sunday, 22 September 13

45

PCells
• Create a Pcell supermaster

manually using the New Cell
command.

• This creates the SuperMaster
cell nmos13_multi
– Do not edit this cell!
– It is there for 2 reasons

• To help you debug writing
pcells

• To allow the Create Instance
command to reference it.
An instance of its
submaster is then created
and used.

Sunday, 22 September 13

46

PCells
• To create a PCell instance in

your layout:
– Use the Create Instance command
– Edit the Instance Properties tab on

the options form to set the PCell
parameters.

• The Properties tab shows the
default Pcell parameters; you
can modify these to the values
you want.

Sunday, 22 September 13

47

DRC / extraction / LVS

Sunday, 22 September 13

48

DRC
• Design Rule Checking (DRC) in Glade uses Python

scripting
– DRC rules files are scripts calling Python functions

• Boolean operations and DRC checks are performed
by a scanline algorithm (Bentley-Ottman)
– Not suited for very large designs as layers are processed

flat
– Maybe tiling in the future can address this

• DRC commands for common operations
– Boolean ops to create derived layers e.g. gate = poly AND

active
– Connectivity extraction for samenet/diffnet rules
– DRC commands to check e.g. width, spacing, overlap etc.

Sunday, 22 September 13

49

A simple DRC example
A simple DRC script might look like this:

from ui import *
cv = getEditCellView()
geomBegin(cv)
active = geomGetShapes("active", "drawing")
poly = geomGetShapes("poly", "drawing")
gate = geomAnd(active, poly)
geomWidth(gate, 0.18)
geomEnd()

1. First we import the ui module so we can access the geom… Python functions
2. Next we get the cellView we want to check – in this case the current open cellView
3. We initialise the geometry engine with geomBegin, which takes a single arg – the cellView
4. We read in data on layers we wish to use
5. We perform some boolean operations to create derived layers
6. We perform a DRC check on the derived layer (in this case checking the width is not less

than 0.18um)
7. Lastly we exit the geometry engine to free memory.

Sunday, 22 September 13

50

Importing layers
• geomGetShapes() is used to get all the shapes on a

given layer
– By default it flattens the hierarchy of the cellview
– It creates an edge file. This is a temporary disk file in

compact binary format that stores all shapes of a given
layer as a set of edges for each polygon.

– geomGetShapes() also merges shapes and orders polygon
vertices as counterclockwise (internally the geometry engine
stores polygons as counterclockwise, and holes as
clockwise vertices).

– The resulting edge file can be imagined as a ‘layer’. Layers
generated from geomGetShapes() are known as ‘original’
layers. Layers generated by subsequent boolean or
selection functions are know as ‘derived’ layers.

Sunday, 22 September 13

51

Boolean operations
• There are many operations to process shapes on

layers:
– geomMerge() : performs single layer OR
– geomOr() : performs two layer OR
– geomAnd() : performs two layer AND
– geomNot() : creates the inverse of the layer data
– geomAndNot() : subtracts a layer from another layer (the inverse of geomAnd())
– geomXor() : performs the XOR of two layers
– geomSize() : up or down sizes a layer
– geomTrapezoid(): converts a layer’s polygons to trapezoids

Sunday, 22 September 13

52

Selection operations
• Similarly there are operations to select shapes based

on some criteria:
– geomTouching()
– geomOverlapping()
– geomInside()
– geomOutside()
– geomAvoiding()
– geomButting()
– geomCoincident()
– geomHoles()
– geomNoHoles()
– geomGetTexted()

Sunday, 22 September 13

53

Labelling shapes
• geomLabel() will assign net names to shapes

– Typical use is for extraction to label known nets

geomLabel(metal1, "m1txt", "drawing")

• The above uses text on the ‘m1txt drawing’ layer
purpose pair to assign net names to shapes on
metal1
– Text origin must overlap the shape

• Labelled shapes will be used in connectivity
extraction as starting points for connectivity tracing.

Sunday, 22 September 13

54

Connectivity extraction
• The geometry engine can extract connectivity from

shapes, using the geomConnect() function:

geomConnect([

 [cont, active, poly, metal1],

 [via1, metal1, metal2]
])

• In this example we connect the active, poly or metal1 shapes to each
other via the ‘cont’ layer. Similarly for metal1/metal2 by the ‘via’
layer.

• geomConnect will use net names from e.g. geomLabel() else it will
assign generated names (n1, n2….) to connected shapes as net
names.

• geomConnect will warn of shorts e.g if a shape labelled ‘vdd’ is
eventually connected to another shape with a different label e.g.
‘gnd’. It will report the coordinates and layers of the shorts.

Sunday, 22 September 13

55

DRC checking commands
• DRC check commands check for specific rules:

– geomWidth() : minimum width of a shape
– geomSpace() : minimum space of shapes on 1 or 2 layers
– geomNotch(): minimum space between edges of a shape
– geomArea() : minimum / maximum area of a shape
– geomEnclose() : enclosure of one shape by another
– geomExtension() : extension of shape on one layer beyond shape on other layer’s edge
– geomOverlap() : minimum overlap of shape on one layer by shape on other layer.

• DRC commands generate markers on original layout
that can be viewed by Verify->DRC->View Errors…

• DRC command also generate edge files that can be
used:
– errorLayer = geomWidth(metal1, 0.4)

• Generates a derived layer ‘errorLayer’ with shapes that are the violations from the geomWidth()
command.

Sunday, 22 September 13

56

Running DRC
• Env var GLADE_DRC_FILE

sets DRC rules file in ‘Verify-
>DRC->Run’ dialog

• Env var
GLADE_DRC_WORK_DIR sets
location of temporary files.

• Use Verify->DRC->View
Errors… to display DRC
marker viewer
– Left click on rule will zoom in

on first error for that rule
– #Viewed / #Remaining show

errors viewed and remaining to
view.

Run
DRC View

DRC
markers

Clear DRC
markers

Sunday, 22 September 13

57

Extraction
• Extraction (Verify->Extract…) uses similar boolean

processing as DRC.
– Note that forming connectivity is optional for DRC, but mandatory for extraction!

• Extraction requires saveInterconnect() command to
save connected shapes into extracted view.
– This allows extraction of devices e.g. MOS, BJT, resistor etc.

• Devices are extracted using extract… commands.
– Each needs a ‘recognition region’ i.e. a layer that uniquely identifies the type of device (e.g. gate =

geomAnd(poly, active))

• Extraction uses PCells to form devices with a
polygon outline created from the recognition region.

• Extracted view can be used for LVS or for netlisting
(File->Export CDL…

Sunday, 22 September 13

58

saveInterconnect
• saveInterconnect() is used to save shapes with

connectivity to the extracted view when running
extraction.

saveInterconnect([
 [psub, "psub"],

 nwell,

 [ndiff, "od"],

 [pdiff, "od"],

 [polyg, "polyg"],

 cont,

 metal1,

 via12,

 metal2])

• Save layers must be derived from geomConnect()
• Any derived layer must be saved to a named layer

– The layer will be created if not defined by the techfile

Sunday, 22 September 13

59

Running Extraction
• Env var GLADE_EXT_FILE sets

extraction rules file in
‘Verify->DRC->Run’ dialog

• Env var
GLADE_DRC_WORK_DIR sets
location of temporary files

• Set ‘Selection Type’ to ‘Net’
to select all shapes on a net
in the extracted view.

• Extraction will report any
shorts found.

Sunday, 22 September 13

60

Running LVS
• Prerequisites:

– Extraction must have completed
successfully with no errors.

– A flat or hierarchical CDL/Spice
netlist must be available.

– Optionally, layout should have
labels for primary IOs and
power/ground (helps Gemini) or
an equivalence file (matches
layout net names to CDL/Spice
net names)

– Env var GLADE_NETLIST_FILE
can be set to CDL netlist file
name to preset the LVS form

• For Gemini options, see
Gemini documentation
– (www-scf.usc.edu/~ee577/manual/

gemini_man.ps)

Sunday, 22 September 13

61

Python programming

Sunday, 22 September 13

62

Python Programming
• Glade has an embedded

Python interpreter.
• Database, GUI and

geometry processing
(DRC/Extract/LVS) C++
code is wrapped using
SWIG to give Python
callable functions.

• Python code can be
executed using File-
>Run Script… or typed
into the command line.

• Python cmd line supports
history (use up/down
arrows) and standard
QLineEdit ctrl character
sequences.

Python
command line

Python output
to the
message
window

Sunday, 22 September 13

63

Python Programming
• Python looks for modules in PYTHONPATH env var!

– Glade adds to this according to platform
• %GLADE_HOME% (Windows & Mac)
• $GLADE_HOME/bin (Linux)

– You may want to add paths to e.g. PCell libraries.
• Python distribution libraries are at

– %GLADE_HOME%/Python27 (WIN32/64 – contains libs and
DLLs)

– $PYTHONHOME (Linux/Mac) OR:
– /usr/local/lib/python2.6 (Linux)
– /usr/lib/python2.7 (Mac)

Sunday, 22 September 13

64

Example Python code
from ui import * # Import the swig wrappers
ui = cvar.uiptr # Get the pointer to the ui class
lib = library("fred") # Create a library
cv = lib.dbOpenCellView("test", "layout", 'w') # Create a new cellView in the library
tech = lib.tech() # Get the tech class associated with the library
layer = tech.createLayer("layer1", "drawing") # Create a layer we can draw on
ui.openCellView(lib.libName(), cv.cellName(), "layout") # Open the cellView in the gui so we can see it
nPoints=4
x = intarray(nPoints) # Create an array of 4 points
y = intarray(nPoints)
x[0] = 1000 y[0] = 1000
x[1] = 6000 y[1] = 1000
x[2] = 6000 y[2] = 3000
x[3] = 1000 y[3] = 3000
poly = cv.dbCreatePolygon(x, y, nPoints, layer, 1) # Create a polygon (default dbu/micron is 1000)
angle = 30.0
origin = Point(1000,1000)
trans = dbTransform64(angle, origin) # Create the transform
poly.transform(trans)
cv.update() # Update the cellView (after object(s) are created)
ui.winRedraw() # Redraw the gui

Sunday, 22 September 13

